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Leonhard Euler and the Theory of Ships

Horst Nowacki, Berlin

Abstract

On April 15, 2007 the scientific world will commemorate Leonhard Euler’s 300
th 

birthday. Euler’s eminent work has become famous in many fields: Mathematics, 

mechanics, optics, acoustics, astronomy and geodesy, even in the theory of music. This 

article will recall his no less distinguished contributions to the founding of the modern 

theory of ships. These are not so widely known to the general professional public. In 

laying these foundations in ship theory like in other fields Euler was seeking “first 

principles, generality, order and above all clarity”. This article will highlight those 

achievements for which we owe him our gratitude.

There is no doubt that Leonhard Euler was one of the founders of the modern theory of 

ships. He raised many fundamental questions for the first time and through all phases of 

his professional lifetime devoted himself to subjects of ship theory. Thereby he gave a 

unique profile to this young, still nascent scientific discipline. Many of his approaches 

have been of lasting, incisive influence on the structure of this field. Some of his ideas 

have been become so much a matter of routine today that we have forgotten their 

descent from Euler. This article will synoptically review Euler’s contributions to the 

foundation of this discipline, will correlate them with the stages of Euler’s own 

scientific development, embedded in the rich environment of scientific enlightenment in 

the 18th c., and will appreciate the value of his lasting aftereffects until today. The same 

example will serve to recognize the fertile field of tension always existing between 

Euler’s fundamental orientation and his desire to make contributions to practical 

applications, which has remained characteristic of ship theory to the present day. 

Without claiming completeness in detail this article aims at giving a coherent overview 

of Euler’s approaches and objectives in this discipline. This synopsis will be presented 

primarily from the viewpoint of engineering science in its current stage of development.

1. Introduction

Leonhard Euler (1707-1783) is famous for many brilliant scientific achievements in 

mathematics, in solid and fluid mechanics, as a physicist in optics and acoustics, in 

astronomy and geodesy, and even in the theory of music. Euler excelled also in the 

application of science to practical problems, which in our current awareness has been 

relegated to the background. One of his favorite application themes was also the theory 

of ships, i.e., the application of the scientific principles of solid and fluid mechanics to 

practical and technical problems in the design, performance evaluation and in the 

operation of ships. Euler throughout his scientific career devoted no small share of his 

investigations and publications to such topics in the theory of ships.

It is all the more surprising that Euler’s role in the foundation of modern ship theory and 

the substance of his contributions are not widely known today, even among specialists 

who are working on matters of ship theory today. In this regard the statement made by 

the French geometer Taquet in the 17th c., referring to Archimedes, the classical 

ancestor of ship theory, may also be applied to Leonhard Euler:

„All praise him, few read him, all admire him, few understand him“.

Many causes may have contributed to creating this gap in our historical memory. First, 

Euler wrote the majority of his publications in Latin, the classical language of 
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Fig. 1: Leonhard Euler (1707-1783)                          Fig. 2: Pierre Bouguer (1698-1758)

science at the Academies in his era, in particular also his principal opus on Ship Theory, 

the famous „Scientia Navalis“[1] (1749). Thus the access thereto by practitioners of 

shipbuilding must have been difficult, even during Euler’s lifetime. Until today there 

exists no complete translation of “Scientia Navalis“, a two volume work of ca. 900 

pages, into a modern language. Second, it is true that he gave an analytical exposition of 

the subject in brilliant clarity of style, but he rarely ever concerned himself with 

numerical examples for specific, built or designed ships. Third, he presumed from his 

reader an understanding of the mathematical notation of analysis and of the methods of 

infinitesimal calculus, which was not widely spread in his days. Thus his publications 

on the theory of the ship became accessible and comprehensible to the general public 

only after a long delay. Nevertheless his influence in science was always well perceived 

and even without many readers did reach those who later continued his work in 

developing ship theory, certainly no later than in the 19
th 

c.

Euler is not the only founder of the modern theory of ships. Among his contemporaries 

the French scientist Pierre Bouguer (1698-1758), hydrographer, mathematician, 

geodesist, physicist and in particular also ship theoretician must be mentioned who had 

played a similar eminent role in the 18th c. Bouguer has by his principal opus ”Traité 

du Navire“ [2] (1746), written in French, during his lifetime no doubt gained faster and 

more direct influence on developments in practice, in particular since he was willing 

also to furnish practical examples and numerical calculation methods. Bouguer and 

Euler both were first to use infinitesimal calculus as an approach to subjects of ship 

theory. This is why I count both of them as founders of “modern” ship theory. Their 

contemporaries, especially during the second half of the 18
th 

c., such as D’Alembert, 

Jorge Juan de Santacilia or Chapman, also made other, influential contributions to the 

fundamentals of the theory of ships. In this illustrious field Euler is eminent by his long 

range impact on the whole field of ship theory which he founded on the first principles 

of mechanics and to which he gave a systematic structure. This is why Euler’s role as a 

founder of ship theory will be particularly stressed in this article.

In the following sections a chronological survey will be given first illustrating how 

topics of ship theory accompanied Euler’s whole scientific career. Then Euler’s 

individual contributions are sorted by thematic aspects and are assigned to the most 

important subtopics of ship theory: Hydrostatics and ship stability, resistance, 

propulsion, maneuvering and ship motions in rigid body degrees of freedom. His impact 

on the development of general fluid mechanics will be briefly recorded, too. This 

overview will demonstrate the close interrelation between fundamentals and 
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applications in his work, and will illustrate on the other hand how even a brilliant 

scientist like Euler cannot offer all definitive solutions in one strike, but must 

continuously learn by experience to achieve a mature form of his insights. Euler 

accepted and succeeded in this lifelong learning process.

In later literature Euler by some commentators, and not infrequently, was characterized 

as a pure mathematician without motivation for practical applications. I must dismiss 

such views (cf. also Truesdell [3], Eckert [4]). Rather it is essentially demonstrated by 

his contributions to the foundation of the theory of ships that his goal in this context was 

to achieve practical success in applications by a well constructed physical foundation. 

This message will also be presented in this article. 

2.   The Theory of Ships in Euler’s Biography

Euler’s biography is well known from multitudinous presentations (e.g. Fellmann [5]). 

His oeuvre has been very systematically documented and reprinted in his Collected 

Works (Opera Omnia Euleri [6]), although these comprehensive series have not yet 

been fully completed. In this collection his treatises dealing with the theory of ships are 

contained, too (Series II, vols. 18-21). Table I gives an overview of Euler’s 

contributions to this subject area with reference to the Enestroem Index Nos. of his 

publications. In these volumes generally very elaborate appreciations and interpretations 

of his works are given. The following must be mentioned in particular in the context of 

fluid mechanics and ship theory: Truesdell [3], Habicht [7, 8, 9]. Further in the same 

vein important summaries are given in: Burckhardt et al. [10], Szabó[11], Mikhajlov 

[12], Calinger [13]. In addition several general textbooks on the history of fluid 

mechanics contain sections appreciating Euler’s contributions (e.g. in Calero [14], 

Darrigol [15]). The monograph by Ferreiro [16] on the history of ship science in the 

17
th 

and 18
th 

c. also touches on many details of Euler’s life and work. The contents of 

such available sources shall not be repeated here. Suffice it to acknowledge in gratitude 

that I owe them much inspiration.

Rather I just want to retrace here how it happened that Euler developed a predilection 

for subjects of the theory of ships, a preference that is not obvious for the son of an 

Alpine country, and how he consistently returned to his early maritime application 

interests during many stations of his vita. Table I shows evidence that his related 

publications appeared between 1727 and 1782. How did this lifelong affinity arise?

Leonhard Euler was born in Basel, Switzerland on April 15, 1707 as the son of the 

Swiss reformed priest Paulus Euler and his wife Margarethe née Brucker. He attended 

a Latin Grammar School in Basel at the age of 8 to 13, as it was customary, and then 

enrolled at Basel University in preparatory courses. Here before he was age 15 he met 

his later mentor and patron Johann Bernoulli (1667-1748), one of the leading scientists 

of this era in mathematics and mechanics , from whom he took courses in these two 

subjects. Bernoulli very early recognized Euler’s eminent talent and invited him to take 

part in the series of Saturday private meetings in his house which he held with his sons 

and selected guests and where mathematical subjects were discussed, literature was 

reviewed and problems were solved. This is where Euler also got acquainted with 

Johann Bernoulli’s sons, in particular with Daniel Bernoulli (1700-1782), with whom 

he developed a long lasting friendship. After completing his first degree in 1723 by the 

Magister examination, although Euler at his father’s urging then enrolled in the divinity 

faculty, he continued intensively to concentrate on mathematical studies under Johann 

Bernoulli, who much promoted him.

Now it was essentially a coincidence that Johann Bernoulli had already for some time 

concerned himself with special questions of ship theory because he regarded this field 

as a promising area for applying the still new methods of infinitesimal calculus 
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Table I: Euler’s Publications on Subjects of Ship Theory 

Enestroem

Index No.

Title

Place in 

Opera 

Omnia,

Series 

vol., p.

Manu-

script

Date

Publi-

cation

Date

Publi-

cation 

Place

E.4

Meditationes super problemate nautico, 

quod illustrissima regia Parisiensis 

Academia scientiarum proposuit

(Thoughts on the Nautical Problem Posed 

by the Most Illustrious Royal Parisian 

Academy of Sciences)

II 20, 

1-35

1727 1728 Paris

E.78

Dissertation sur la meilleure construction 

du cabestan

(Treatise on the Best Construction of the 

Capstan)

II 20, 

36-82

1741 1745 Paris

E.94

De motu cymbarum remis propulsarum in 

fluviis

(On the Motion of Barges Propelled by 

Oars on Rivers)

II 20,

83-100

1738 1747

St. 

Peters-

burg

E.110/

E.111

Scientia Navalis, seu tractatus de 

construendis ac dirigendis navibus

(Ship Theory or Treatise on the 

Construction and Steering of Ships)

II18/19,

2 vols.

1741 1749

St.

Peters-

burg

E.116

Mémoire sur la force des rames

(Memorandum on the Force of Rudders)

II 20,

101-12

9

1747 1749 Berlin

E.137

Examen artificii navis a principio motus 

interno propellendi

(Examination of the Thought to Propel A 

Ship by the Principle of Internal Motion )

II 20,

130-14

5

1747/48 1750

St.

Peters-

burg

E.150

Meditationes in quaestionem 

observationibus temporis momentum 

determinandi

(Thoughts on the Question of Determining 

the Momentum by Observation of Time)

II 20,

130-14

5

1747 1750 Paris

E.413

De promotione navium sine vi venti

(On the Propulsion of Ships without the 

Force of Wind)

II 20,

146-18

9

1753 1771 Paris

E.415

Sur le roulis et le tangage

(On Rolling and Pitching)

II 21,

1-30

1759 1771 Paris

E.426

Théorie complette de la construction et de 

la manœuvre des vaisseaux

(Complete Theory of the Construction and 

Maneuvering of Ships)

II 21,

80-222

1778 1781

St.

Peters-

burg
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Table I: Euler’s Publications on Subjects of Ship Theory (cont.)

Enestroem

Index No.

Title

Place in 

Opera 

Omnia,

Ser.,

vol.,p.

Manu-

script

Date

Publi-

cation

Date

Publi-

cation-

Place

E.520

Essai d’une théorie de la résistance 

qu’éprouve la proue d’un vaisseau dans 

son mouvement

(Attempt at a Theory of Resistance 

Referring to the Forebody of a Ship in its 

Motion)

II 21,

223-22

9

1778 1781 Paris

E.545

De vi fluminis ad naves sursum trahendas 

applicanda

(On the Force to Apply to Tow Ships 

upriver)

II 21,

230-24

2

1780 1783

St. 

Peters-

burg

developed by Newton and Leibniz. Johann Bernoulli in a treatise as early as 1714 [17] 

had been first to attempt to apply Newton’s impact theory of resistance (cf. below) to 

determine the forces acting on a ship sailing before the wind, viz., both the hull 

resistance due to underwater hydrodynamic forces and the thrust acting on the sails due 

to the aerodynamic effects of wind. He achieved this in a mathematically valid way by 

integration of the fluid dynamic impact forces acting on their respective areas of 

application. However the agreement of these predictions with empirical observation was 

disappointing, which was to be attributed to the inadequate premises stipulated in 

Newton’s impact theory for the determination of the resistance in water. The subject 

remained of intriguing interest to Bernoulli and met a fashion of this time which favored 

subjects aiming at improvements in the performance of technical systems such as ships 

by means of scientific methods.

When the Parisian Royal Academy of Sciences launched a prize contest in 1726 in order 

to determine the optimal configuration, number and height of masts for sailing vessel 

propulsion, Johann Bernoulli encouraged his student Leonhard Euler to submit a 

contribution. Why Johann Bernoulli did not participate in the contest himself, cannot be 

clearly stated. Perhaps he wanted to promote Euler and at the same time avoid the risk 

of laying open his cards to the competition? In any case it was in this way that Euler’s 

first  treatise [18] on a subject of ship theory was initiated, which he submitted in 1727 

at the age of. 20.

Euler earned the recognition of a runner-up award (Grade: ”Accessit“) The first prize 

went to Pierre Bouguer, the already better known French scientist, who had been 

working on the issue of ship masting for some time. It is futile to compare the merits of 

the two treatises today. For on the one hand the two authors departed from very similar 

fundamental premises, in particular from Newton’s impact theory of resistance as well 

as a precise knowledge of contemporary sail force theory, which had been intensively 

and controversially debated during the decades before the contest (Renau [19], Huygens 

[20]). On the other hand neither author yet achieved a satisfactory solution to the 

problem. Both suffered from deficits in the fundamentals of hydrostatics which were 

required for determining the equilibrium floating condition by trim and heel angle when 

the ship was displaced by wind loads. This issue was circumnavigated. Euler e.g. 

assumed the vessel to be fixed (or frozen in ice) temporarily in a heeled and trimmed 

condition. It appears however that with respect to such weak assumptions the results of 

the prize contest and the knowledge achieved were not to the satisfaction of Euler at 

least, perhaps not of Bouguer either. For both continued to work on the subject and 

certainly had recognized the deficits in the fundamentals of ship hydrostatics.
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In any event Euler by this experience had established a first closer acquaintance with 

subjects of the mechanics of ships, has familiarized himself with the concepts of ship 

geometry, sailing equipment and nautical topics and from now on maintained a lasting 

interest in problems of ship theory as issues of applied mechanics and mathematical 

analysis.

Still in 1727 Euler received an attractive offer from the Russian Imperial Academy of 

Sciences in St. Petersburg, founded by Tsar Peter I in 1725. He was pleased to accept 

this offer, initially with a modest salary as a research fellow. He traveled by ship on the 

Rhine from Basel to Mainz, from there by horse drawn coach to Lubeck where he 

embarked on a ship to cross the Baltic Sea to reach the Neva in St. Petersburg in June 

1727. He was scientifically quite successful right away and soon advanced to be 

appointed a full member of the Academy (1731) with responsibilities in physics, and 

especially in mathematics and mechanics. His first St. Petersburg period extended from 

1727 to 1741. During this time he also intensively dealt with topics in ship theory.

This is attested first of all by the minutes and reports of the Academy, which in 1735 

assigned to Euler a review of a treatise submitted by La Croix on the transverse stability 

of the ship and, as his reply makes evident, found him well prepared to point out errors 

in La Croix’ derivation and to provide the correct answer, at least for the simple shape 

of a floating parallelepiped. Euler’s stability criterion from the beginning was a positive 

restoring moment when the ship was inclined by a very small (infinitesimal) angle. A 

general solution for ships of arbitrary hull form was already in preparation in 1735.

His reputation for outstanding knowledge in the theory of ships became well known at 

the Academy, so in 1737 – probably at his prior request – he was commissioned by the 

Academy to write a comprehensive treatise on the whole range of subjects in ship 

theory. Therefrom resulted Euler’s most famous opus on this subject, the two volume 

treatise Scientia Navalis. Euler’s manuscripts for this work were completed by 1741, 

but he failed to find a publisher for this voluminous, very specialized treatise in Latin so 

that after very long delays this monumental work of early ship theory did not appear 

until 1749 in St. Petersburg. (Pierre Bouguer’s Traité du Navire [2], a work of 

comparable significance, had been developed simultaneously and independently (see 

[21]), but was published in 1746 in Paris soon after Bouguer’s return from an Andean 

scientific expedition conducted from 1735 to 1744 by the Parisian Academy [16]).

After many scientifically fertile years in St. Petersburg Euler in view of a certain 

political turmoil in Russia accepted an invitation by King Frederick II of Prussia  to 

move to Berlin in 1741, where he was involved in the foundation of the Royal Academy 

of Sciences (1745) and were he worked through 1766. During his Berlin years Euler, 

officially responsible for the class of mathematics, was active in many fields of science 

and remained very creative. Fluid mechanics from these years owes him many 

important, even today still fundamental results:

- Euler’s equation of the motion of a fluid volume element (1752),

- The rejection of Newton’s impact theory of resistance, practised as „common rule“ 

until that time (1753),

- The establishment of a new field theory of fluids, i.e., a continuum theory of fluid 

mechanics, based on the modern concepts of pressure and velocity, initially applied 

to ideal fluids (1755),

- Beginnings of potential flow theory (1755),

- Considerations on fluid friction (1751).

These fundamental results led to a new level of understanding of flow phenomena, 

furnished the exposition for a catalogue of questions for a large class of applications and 
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had lasting effects on the further development of fluid mechanics. The discipline of ship 

theory was included in this spectrum.

Although the most important branches of ship theory had been addressed already in his 

Scientia Navalis, Euler found the opportunity also in his Berlin years to go deeper into 

certain questions and to arrive at new results. The most important subjects during this 

period include ship propulsion [E.116, E.413/[22]] and ship motions in oscillatory 

degrees of freedom [E.415]. Several of these new studies were motivated by prize 

contests of the Parisian Academy in which Euler participated with success.

After some irritating quarrels with Friedrich II Euler in 1766 returned to St. Petersburg, 

where he was welcomed with open arms. During his second St. Petersburg period 

(1766-1783) several further studies in ship theory were performed. The most important 

lasting effects probably stem from his „Théorie Complète...“ [E.426/[24]], a French 

abridged and extended translation of Scientia Navalis in popularized form. This work 

soon was used as a textbook, too, in the education of French naval constructors.

Euler by his lifetime oeuvre has lastingly formed and enriched ship theory. He has 

based it on the first principles of mechanics and thus placed it on a stable foundation for 

its future development. He was not able to provide definitive answers to all questions 

raised. Much remained open. But he had cast a basic structure of the field in which 

scientific work could steadily progress.

3.     Individual Contributions to Ship Theory

3.1 Hydrostatics und Ship Stability

The foundations of hydrostatics were laid by Archimedes (ca. 287-212 B.C.) in 

antiquity. In his famous treatise “On Floating Bodies” [25] he derived what later 

became known as the Principle of Archimedes, i.e., the theorem of equilibrium between 

the forces of weight and buoyancy for a floating object of arbitrary shape. In the same 

treatise, Part II, he also established a criterion of stability of this equilibrium for a body 

floating at rest, though only for the special case of a body of simple shape, the 

axisymmetric paraboloid. His justification was that in an inclined position of the body 

the couple formed by the forces of buoyancy and weight ( =displacement) must provide 

a positive restoring moment for the floating position to be stable. Else the body heels 

over further and may capsize. For further details cf. Nowacki [26]. Archimedes as far as 

we know did not yet apply this criterion to actual ships.

This knowledge possessed by Archimedes was almost completely forgotten for many 

centuries, although fortunately a few handwritten copies of his treatise [25] in Latin and 

in Greek were preserved [26]. But it took many centuries, almost two millennia, before 

the essential insights in this treatise were rediscovered and applied. It was first Stevin 

[27], then Pascal [28] and also Huygens [29] who resurrected hydrostatics (and 

aerostatics) and applied them to modern systems. Stevin, the Flemish/Dutch scientist, 

also first introduced the concept of hydrostatic pressure, based on the weight of the 

fluid column. Huygens first investigated the hydrostatic stability of simple, 

homogeneous bodies as they were rotated about their longitudinal axis by 360 degrees, 

however did not publish his results so that these appeared only posthumously in the 

beginning of the 20
th 

c. in his Collected Works [29].

A few further cuts were taken at the stability problem by Hoste [30] (1698) and by La 

Croix [31] (1735), but they remained still without success. Bouguer und Euler, too, in 

their prize contest treatises of 1727 did not yet offer a practically promising approach. It 

was only by means of integral calculus that they later succeeded, independently of each 

other, to develop criteria for the hydrostatic stability of ships of arbitrary shape, which 
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were published in their treatises, Traité du Navire {2] and Scientia Navalis [1] in 1746 

and 1749, respectively. Euler’s approach will be discussed here in more detail.

To understand Euler’s objectives in his Scientia Navalis, it is useful to take a look at the 

title of this work and the subtitles of the two volumes, which in free English translation 

are:

“Ship Science or Treatise on the Construction and Operation of Ships:

Vol. I: General Theory of the Position and Motion of Bodies Floating in Water,

Vol. II: Reasons and Rules for the Construction and Steering of Ships.”

Euler never chose the wording ”Theory of Ships“, as later authors did. But since his 

opus concerns the “Science of Ships” and he aspired to furnish a general theory of the 

equilibrium at rest and the motion dynamics of floating bodies, applicable in 

shipbuilding and ship operations, as his title and subtitles claim, it is fair to state that his 

objective was the development of a Theory of the Ship, which comprises the 

fundamentals of mechanics for the design, construction and operation of ships. This 

claim is justified by the systematic structure of his work, even if he was not able, being 

limited to the methods of his time, to do justice to all related questions of ship theory. 

He did already provide very significant contributions to the hydrostatics and stability of 

ships. These subjects were treated in Chapters I-IV of Vol. I and Chapters I-III and V of 

Vol. II of his Scientia Navalis, both in their fundamentals (Vol. I) and their applications 

to ships (Vol. II).

Euler opened Chapter I of Vol. I (Equilibrium of floating bodies) with the sentence:

”The pressure which the water exerts on an immersed body at a specific point is normal 

to the body surface, and the force which an individual surface element experiences is 

equal to the weight of a cylindrical water column whose basis is equal to the surface 

element and whose height is equal to the submergence (z) of the element under the 

water surface.“

This implies the defition of hydrostatic pressure p =  z and also of the resulting 

buoyancy force F by integration over the body surface S

                                          F =  p dS =  V   with V = displacement volume

As already underscored by Truesdell [3], Euler formulated here in a single sentence the 

necessary and sufficient axiomatic premises on which hydrostatics are entirely based. 

These premises can hardly be stated more concisely and clearly. In contrast to 

Archimedes, who knew only the resultant hydrostatic buoyancy force, but not the 

pressure, Euler (and similarly Bouguer) derived the buoyancy force as the integral of 

the hydrostatic pressure distribution. This cleared the way to calculating the buoyancy 

force for arbitrary body shapes.

By moment equilibrium it also holds that the buoyancy and weight resultants must act 

in the same vertical plane.

In the course of Chapter I Euler further calculated the equilibrium floating positions of 

simple prismatic shapes (triangular, trapezoidal and rectangular cross section) through a 

rotation of 360 degrees from the condition that the volume and weight centroids must lie 

in the same vertical plane. Each of these shapes has several equilibrium positions which 

may be stable, unstable or indifferent. The stability of each position requires its own 

investigation.
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In Chapter III (Stability of the equilibrium of floating bodies) Euler dealt with the 

derivation of a stability criterion. He proceeded in the following steps:

STEP 1: Premises and Axioms

In his stability considerations like on the issue of equilibrium Euler proceeded from the 

same premises as cited regarding the hydrostatic pressure in a fluid at rest and its action 

normal to the surface.

STEP 2: Resultant Buoyancy and Weight Forces

The resultant buoyancy force in the upright floating condition of the ship by Euler was 

determined as the resultant of the hydrostatic pressures acting on the submerged part of 

the body surface. This force acts through the volume centroid F of the underwater hull 

form (in English today: Center of Buoyancy CB), which Euler called ”centrum 

magnitudinis“.

Analogously Euler combined all weight components of the ship into the resulting 

weight force acting through the center of gravity G.

STEP 3: Volumes and Centroids

Euler defined the geometrical relationships for volumes and centroids in analytic form 

by integral expressions for arbitrary hull forms and floating conditions, but left the 

evaluation of these expressions to numerical methods. The closed form evaluation of the 

integrals succeeded only for simple, regular shapes, which he used as examples.

STEP 4: Stability Criterion

Euler just tersely stated:

„The stability by which a floating body is retained in equilibrium will be determined 

from the restoring moment arising when the body is displaced from equilibrium by an 

infinitesimally small angle“.

This basic idea stemmed from Archimedes, too, but was here applied to ships. Euler 

pointed out that the ship must have a sufficient reserve of stability to be able to resist the 

external effects of heeling moments.

STEP 5: Evaluation of the Criterion

Euler  began his derivation by considering a planar cross section of the ship (Fig. 3). 

The cross section was intentionally assumed to be non-symmetrical to keep the 

derivation general. The ship was displaced by a very small angle from the floating 

position AB to the new floating position ab. Thereby the triangle bCB was immersed, 

the triangle aCA emerged, so that area centroid of the triangles moved from the 

emerging to the immersed side. The area centroid of the whole cross section thereby 

moved parallel to this shift to the immersed side (shift theorem of Archimedes). From 

this action a restoring couple resulted, formed by the weight force (acting through G) 

and the buoyancy of the cross section (acting through the shifted area centroid of the 

cross section). By integration of these effects over the entire ship length Euler obtained 

the restoring moment for the whole ship. Therefrom resulted after a few intermediate 

steps the expression for the restoring moment (for a symmetrical ship), which is very 

well known today:
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Fig. 3: Derivation for a cross section (according to Euler [1]): Displacement of the

            volume centroid O to the immersed side,

            G = center of gravity

                  M
REST 

=  ( GB + I
T
/V) =  (GB + BM) =  GM ,

where           =  V = displacement

                   V = volume under the water surface

                 GB = distance from the center of gravity to the center of buoyancy, positive

                           for B above G

                   I
T 

= area moment of inertia

                BM = I
T
/V

                GM = GB +BM = „metacentric radius“ 

Thus the floating position is stable at small angles of inclination provided that the 

restoring moment  GM is positive. This is called positive initial stability of the ship.

This result is entirely equivalent to Bouguer’s in [2], who for a stable ship postulates a 

positive metacentric radius GM. The name “metacenter” stems from Bouguer and was 

never used by Euler, who was not familiar with this terminology. But in fact both derive 

the magnitude of GM from the ship form by the same expression in order to judge the 

initial stability. Euler uses a physical quantity, Bouguer a geometric one in formulating 

the stability criterion.

Further details on the derivation of the stability criterion by Euler und Bouguer, also in 

comparison, are given by Nowacki and Ferreiro [21].

Extensions:

The knowledge of the metacentric radius GM for the transverse stability and by analogy 

of GM
L 

for the longitudinal stability of the ship now also permitted deriving the 

equilibrium floating condition of the ship provided that the internal weight distribution 

in the ship and the external loads, e.g. wind loads in the sails, was known by magnitude 

and direction. Thereby one could predict the angles of heel and trim for any desired 

internal weight distribution and external load case. Thus both Bouguer and Euler closed 

a knowledge gap still existing in their 1727 prize contest treatises.

Further Euler demonstrated in his Scientia Navalis, Vol. I, Ch. IV, how the stability of a 

ship can be improved, e.g., by lowering the CG, by raising the CB or by broadening the 

design waterplane (raising of M). The effects of weight displacements aboard the vessel 

or changes of the cargo distribution during loading and unloading as well as the effects 

of ballast placement by quantity and position were analyzed as practical questions. 

These results have not lost any practical relevance and accuracy until today.
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3.2 Ship Resistance

In order to better appreciate Euler’s contributions to the theory of ship resistance, a few 

remarks on the earlier developments on this subject will be useful. The interest in 

predicting the resistance of a hull form and in improving the design of the hull shape in 

order to reduce the resistance and to increase the achievable ship speed in practical 

applications is probably as ancient as seafaring. Theoretical methods for resistance 

prediction, however, based on scientific grounds were not developed before the stage of 

the „Scientific Revolution“ in the 17
th 

and 18
th 

c.

In experimental work Christiaan Huygens (1629-1695) and Edmé Mariotte (1620-1684) 

must be named as important precursors. Huygens [32] already in 1669 in a small towing 

tank performed resistance tests with simply shaped ship models, which were towed by a 

falling weight apparatus (Fig. 4), in order to determine the dependence of the resistance 

R on the speed V. He found a quadratic resistance law: R ~ V
2

. Mariotte [33] 

investigated other simple shapes, which he exposed to a current, e.g., in a current in a 

river or in air, in order to measure their resistance. He found the relationship R ~ V
2

, 

hence also a proportionality to the density of the fluid medium . Both sets of 

experimental results were published only posthumously (1698 for Huygens, 1686 for 

Mariotte).

Newton who first published his Principia in 1687 certainly was not familiar with these 

results at that time. But in his own way he quite independently arrived at corresponding 

conclusions. Thus at the beginning of the 18
th 

c. from various sources there was 

agreement that the resistance law for objects in parallel inflow had the following 

structure:

R ~ V
2  

S                 or              R = C
D 

V
2 

S ,

where S = reference area, e.g., the projection of the maximum cross section (midship 

                 section)

            = density of the fluid

         C
D 

= resistance coefficient

Fig. 4: Towing test apparatus with falling weight according to Huygens [32]



 - 12 -

If this assumption was accepted, the most important open question was the dependence 

of the resistance coefficient on the body shape, the direction of inflow and other 

potential influences. Resistance research, at least in the 18
th 

c., concentrated on this key 

question, strongly motivated by the goal of finding favorable shapes in fluid flow.

Newton devoted the second volume of his Principia completely to fluid mechanics 

whose theory he newly conceived from fundamentals. Newton took an experimental and 

theoretical approach, but in his theory had to confine himself to simple cases. In his 

models of thought he introduced many distinct cases and for each set of assumptions 

argued very cautiously and with incisive simplifications. Although he clearly 

recognized that in fluid mechanics the influences of inertia forces, gravity forces and 

viscous effects all play a certain role, in studying resistance he much favored the 

situation with pure inertia effects and for this case developed a corpuscular resistance 

theory with the following further assumptions:

- Let the onflow be composed of mass particles (corpuscles) that move on parallel 

paths with uniform velocity V toward the body (or obstacle).

- Let the fluid medium be so „thin“, i.e., of such low density, that the particles 

maintain a small, but finite distance from each other without colliding with or 

influencing each other.

- The fluid be either elastic so that the particles bouncing on the obstacle are repelled 

as in an elastic impact without loss of kinetic energy (Fig. 5A); or the fluid be inelastic 

so that the particle motion upon impact is completely stopped. In the event of oblique 

inflow the particle paths are deflected and mirrored relative to the body normal at the 

point of contact (Fig. 5B).

- According to the laws of impact in the elastic or inelastic case the resistance of the 

object can be determined by the momentum balance of the fluid mass stream. The 

resistance in the elastic case is twice as high as in an inelastic fluid. Newton found the 

resistance coefficients for several simple body shapes on the basis of these laws and 

assumptions.

Newton himself was very cautious when justifying this experiment of thought for a 

body in a „thin“, corpuscular medium subject only to inertia forces. He never claimed 

the existence of thin media in nature. He explicitly pronounced that water was not a thin 

medium. Rather he considered this case as a hypothetical scenario and perhaps as a 

limiting case that could never be reached. In a different place he directly mentions 

viscous and gravity effects. But unfortunately his disciples and adherents were not so 

cautious. They quickly and uncritically proceeded to apply Newton’s theory to thin 

media, which they called “impact theory”, to real fluids and e.g. to bodies in water and 

air. The results were entirely disappointing, but due to Newton’s authority such 

misleading concepts were widespread for a considerable time. The main deficits of 

impact theory became clearly evident in such applications which were well outside the 

range of validity which Newton had claimed:

- The corpuscular theory does not permit any particles to reach the rear side of the 

body in its inflow. Rather they are all reflected from the front side. Thus only the front 

side will incur any resistance. The orbits of all particles near the body are unrealistic.

- The neglect of viscous and gravity effects gravely impairs the prediction of 

resistance. If inertia effects are assumed to be the only existing forces, then each body 

shape will have its own, speed independent C
D 

value. In a real fluid, however, as we 

know today, the resistance coefficients depend on several categories of forces and 

hence on several parameters of similitude.
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These critical insights were not pronounced in the beginning of the 18
th 

c. Rather for at 

least half a century impact theory remained the only available, even though increasingly 

distrusted method for predicting the ship resistance.

The beginning of a critical reanalysis and reformulation of fluid mechanics was made in 

1727 by Daniel Bernoulli [35], when in experiments he measured the force exerted by a 

jet impinging on a flat plate and detected fundamental contradictions between his 

results and Newton’s impact theory. He then developed a new theory for pipe flows, 

based on the energy conservation principle, which for this case yielded a new 

relationship between pressure and velocity in a „stream tube”, the predecessor of 

Bernoulli’s equation. In its further development this led to a new paradigm for fluid 

mechanics for the parallel onset flow of a flat plate [36], where in contrast to impact 

theory the streamlines (and thus the particle orbits) are no longer reflected upon impact, 

but are deflected laterally before impact (Figs. 5C and 5D). This concept was also 

elaborately presented in Daniel Bernoulli’s famous book “Hydrodynamica” [37].

His father Johann Bernoulli in his no less famous book „Hydraulica” [38], which 

appeared in 1742, carried these ideas a little further in a more general vein and based 

his derivations on Newton’s Lex Secunda (in place of the energy principle), which he 

applied to a free volume element in the flow. He also introduced the concept of 

“internal fluid pressure” in a moving fluid, whereby the Bernoulli equation for a 

“stream tube” obtained the form well known today.

Fig. 5: Flow characteristics in parallel onset flow of a flat plate according to Newton and 

Daniel Bernoulli:

A. Newtons impact theory in an elastic, thin medium (reflected particles), inflow

              normal to the plate.

B. The same theory, oblique inflow.

C. Daniel Bernoulli’s theory of deflected streamlines, normal inflow.

D. The same for oblique inflow.
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This was the state of knowledge that Euler, who corresponded frequently with both 

Bernoullis, found by around 1742, before he began to base his own ideas on it and to 

arrive at an original new view of fluid mechanics. At the time when his Scientia Navalis 

was written, viz., between 1737 and 1741, Euler was still a user of Newton’s impact 

theory of the resistance. Therefore in this principal work of his [1] and also in the later 

adapted French translation, the Théorie Complète [21], we find only deductions based 

on impact theory. Euler expressed his later contrasting views in other places. 

Nonetheless it is worthwhile to briefly reexamine Euler’s thoughts in Scientia Navalis, 

also with respect to resistance, at least because of his systematic approach.

In Scientia Navalis, vol. I, Chapter V, Euler first considered the resistance of planar 

figures or planar cross sections of cylindrical bodies (Example: A rectangular rudder 

with constant profiled cross sections). He determined the resulting resistance in normal 

or oblique inflow in three different ways: By Newton’s impact theory in an elastic or an 

inelastic medium or thirdly by the energy principle. All three results have the same 

structure (in modern notation):

R =  C
D 

V
2 

S ,

as stated by Newton above. Euler did not commit himself to any of the C
D 

values, but 

argued that it was only the structure of the expression which mattered, while the 

coefficient had to be brought into agreement with experiments anyway. Besides the 

theoretical C
D 

value represented an upper bound because the theory neglected that the 

fluid particles were not strictly repelled, but could reach the rear side of the body. This 

was an elegant way out of the dilemma, but not a quantitative solution.

Euler then proceeded to determine the resistance coefficient for several simple shapes of 

cross sections (triangle, circular and elliptical segment etc.). It is of interest that he 

already searched for an optimal profile form with minimal resistance with certain profile 

dimensions (length, thickness) as given constraints. Newton had already posed the 

problem of an axisymmetric body shape of least resistance and had formulated a 

variational problem for this special case. Euler went one step further and specified here 

the general problem statement for a variational problem with equality constraints whose 

general theory he published later in 1744 [39], hence after completing the manuscript 

for the Scientia Navalis. He solved it here for special cases. Further examples by Euler 

were related to the effects of oblique inflow on foils (under an angle of incidence), 

hence on their resistance, lift and moment. His systematic approach is admirable, 

though unfortunately the quantitative results based on impact theory are useless.

In a corresponding way in Scientia Navalis, vol. I, Chapter VI, Euler approached the 

resistance problem for spatial solid shapes. He started out with the basic expression for 

the resistance and moment of a solid in parallel inflow according to impact theory, but 

then restricted himself to the special case of inflow parallel to the axis of symmetrical 

shapes. His procedure in generating families (or systematic series) of shapes is 

remarkably modern. He created mathematical hull form representations that can be 

systematically varied so that a whole range of typical shiplike form parameters is 

covered. The ship form or hull surface was represented in parameter form by  r(u,v) = 

{x(u,v), y(u,v), z(u,v)}  and was applied to the special case where separation of 

variables is feasible, e.g.,  x(u,v) = f(u) g(v). Then it is easy to generate families or types 

of shapes in which all stations or all buttocks or all waterlines are affine curves. (A 

similar approach was frequently taken much later in ship theory for systematic 

investigations of hull form variation, e.g., by Weinblum [40] in wave resistance studies). 

Euler then examined the resistance of various types and treated some of them by 

optimization based on variational calculus. Further he discussed special shapes in which 

the forebody, the only part relevant to resistance in impact theory, was conical, 

pyramidal or cono-cuneiform (cono-cuneus by John Wallis [41]) or was an 

axisymmetric shape (with circular section shapes). It is clearly evident that by these 

variations in ship form he was aiming at a systematic overview, almost a compendium, 

on the dependence of resistance on shape design, a very practical purpose. His plan was 
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again brilliantly logical, we may call it “systematic engineering”. His results regrettably 

shared the fate of impact theory which soon became obsolete. Euler recognized the 

weak points early, but during his lifetime there did not yet exist a viable alternative for 

resistance prediction. A fundamental new start was required.

The first steps in this new direction were still taken by Euler himself, inspired by a few 

discoveries by his contemporaries. An important impetus came from the ballistic 

experiments performed by the Englishman Benjamin Robins, whose results were 

described in his book “New Principles of Gunnery” [42] in 1742. Robins had shot with 

spherical projectiles against a target disk suspended as a pendulum and had found out 

that Newton’s impact theory was completely untenable for the resistance of his 

projectiles. Euler [43] had the opportunity in 1745 to translate Robins’ book into 

German and provided its text with many elaborate comments and footnotes. He fully 

agreed with Robins in his criticisms, fundamentally rejected the idea of a “thin 

medium”, because such a fluid was not found in nature, and he developed his own first 

ideas, inspired by the Bernoullis, on how the flow about a body could be described more 

realistically by “stream tubes” that enclose the body shape and remain attached to its 

afterbody. (On this episode, cf. also Truesdell [3], Szabó [11] and Calero [14]).

3.3 Field Theory of Fluids

In the following years Euler turned above all to general fundamentals of fluid 

mechanics, which were not yet applicable to ship theory, but were necessary to create a 

new basis on which later also the theory of ships could be safely founded. Euler was no 

doubt strongly influenced by the results obtained by Daniel Bernoulli (stream tube 

concept, energy conservation theorem, deflection of the flow before impact), by Johann 

Bernoulli (Second law of dynamics applied to a volume element, internal pressure, 

Bernoulli equation for a fluid filament or in a stream tube) and by Robins (refutation of 

impact theory). D’Alembert [44] somewhat earlier had already formulated a first “field 

theory” for the flow about bodies in a fluid. Euler likewise wanted to establish the laws 

of continuum mechanics in fluids, i.e., the laws for the state variables pressure and 

velocity in any desired point of the fluid flow, e.g. in the flow about a body. 

D’Alembert’s field theory had consistently avoided the use of concepts like pressure as 

a state variable and force according to Newton’s dynamics. Euler based his approach on 

Newton’s laws and chose pressure and velocity as state variables. He thus created the 

foundation of the modern field theory of fluids, as we know it and use it today

Euler pursued the goal of replacing Newton’s impact theory by a new theory which 

dealt with the physical state variables in the whole domain of the fluid treated as a 

deformable medium. His axiomatic premises were:

- Newton’s laws as principles of dynamics.

- Constitutive equations, i.e., information about the material properties of the fluid, 

initially regarded as an ideal fluid, and on the boundaries of the fluid domain..

- Conservation laws, especially on the conservation of mass (hence the continuity 

equation).

From this information alone pressure and velocity can be determined. These variables of 

state are multivariate functions of the location in the field.. Euler’s approach, the 

application of Newton’s Lex Secunda to a fluid volume element, yielded the equations 

of motion of the element, the famous Euler equations in the form of a set of partial 

differential equations. The continuity equation is of a comparable form.

The Euler equations and the continuity equation constitute the foundation of the field 

theory of fluid dynamics. Euler developed this theory in general form in a few classical 

papers [45], [46], [47], [48], [49] between 1752 and 1756. His theory holds for planar 

and spatial flows in incompressible and compressible fluids.
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Thereby the equations of state of the flow problem are established. Therefrom a form of 

the Bernoulli equation can also be derived that holds for any arbitrary streamline in the 

entire fluid domain. If the boundary conditions are added, a complete problem 

formulation results in a form that is called boundary value problem today. In Euler’s 

time the mathematical theory for solving partial differential equations and boundary 

value problems was developed concurrently with the treatment of this flow problem of 

field theory. Euler himself created important foundations although initially solution 

methods for arbitrary given body shapes were still missing. Euler showed that the field 

under certain conditions may possess a velocity potential for which solutions can more 

readily be built up. This was the starting point for the later development of singularity 

methods to solve this type of boundary value problem of potential theory.

If in some specific case the solution for the state variables is known, a streamline field 

map can be developed and therefrom, as Euler suggested, especially for the streamlines 

on the body surface velocity and pressure distributions can be derived. Pressure 

integration then yields the resulting force on the body. In an ideal fluid, as D’Alembert’s 

paradox anticipated and Euler was able to confirm by pressure integration, the result 

which is obvious to us today is achieved, viz., that the resistance of a deeply submerged 

body in a steady flow vanishes. Thus field theory proved the following facts to start 

with:

- The assumptions of Newtons impact theory for the resistance are not tenable.

- A flow that remains attached to the entire body surface and whose afterbody 

therefore contributes to the resistance is feasible. 

- In an ideal, lossfree fluid the resistance vanishes.

By these results fluid mechanics had overcome a difficult stalemate and was able to 

develop further without impairing contradictions. For application in ship theory the new 

insights gained were apt to produce a rich harvest later in the 19
th 

and 20
th 

c. Today the 

practically successful analytical and numerical methods for calculating the flow about 

an arbitrary ship form in an ideal fluid all are based on Euler’s equations of fluid 

mechanics on the one hand, and on Euler’s field theory on the other hand. 

The other major obstacle, which prevented the development of a realistic theory of 

resistance and which unfortunately could not be removed in the 18th c. any more, was 

the lack of understanding the causes of wavemaking and viscous resistance. For the 

resistance cannot be realistically estimated without taking into account the energy losses 

caused by the effects of gravity and hence wavemaking on the one hand, and those 

caused by the viscosity of the fluid on the other hand. In the case of a real fluid the 

resistance law must account for several parameters of similitude (later called Froude 

number, Reynolds number etc.) and therefore must provide more than one freely 

allocable resistance coefficient. In the 18
th 

c. the influence of both  resistance 

components was underestimated. The effects of wavemaking were first more clearly 

recognized in model experiments (Juan [50], Chapman [51]) and there followed first, 

immature theoretical hypotheses [50]. The friction on the body surface was judged as 

low [cf. also Euler [52]) and was regarded as neglible in the interior of the fluid. It was 

only by the thorough experiments performed by Beaufoy [53] beginning in 1793 on the 

frictional drag on plates that the relatively considerable significance of frictional 

resistance, also on ships, was realized. It still took a long time before William Froude 

[54] presented a method that took into account several parameters of similitude in ship 

resistance and thereby permitted faithful prediction of full scale ship resistance from 

model tests. The theories of wave resistance and viscous resistance could not reach 

maturity before that insight.
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3.4 Ship propulsion

In the 18th c. ship propulsion by wind energy in sailing and by human energy in rowing 

were the predominant methods and energy sources. Euler  investigated the mechanical 

principles for both methods of propulsion. Besides he analyzed certain innovative, not 

yet practically applicable propulsion systems like the paddle wheel, the screw propeller 

and jet propulsion.

Already in his prize contest treatise [18] of 1727 Euler –not unlike Bouguer- devoted 

his attention to sail propulsion. In the spirit of Newton and other precursors he analyzed 

the forces acting on a sail and the resistance of the hull by means of impact theory. Later 

in Scientia Navalis and even still in his Théorie Complète –like many of his 

contemporaries- he remained committed to this approach. This unfortunately led to 

rather misleading results regarding the forces acting on the hull and the sails. Fig. 6 

shows the component decomposition in the forebody for resistance and thrust. 

According to impact theory the hull resistance acts on the forebody normal to its 

surface, and hence obliquely upward. In the example of the figure Euler assumed a 

spherical segment bow shape so that all impact force contributions acted through the 

center of the spherical shell W. The resultant WR acted in a direction normal to the 

spherical segment in its area centroid. Now it was the dominant opinion in the 18
th 

c. 

that masts and their sails in design should be arranged in such a way that the resultant 

sail force would have a horizontal forward thrust component, intended to act also 

through the point W, called “point vélique”, and then in steady motion should be in 

equilibrium with the horizontal component of the resistance. Thereby it was intended to 

prevent a trimming moment formed by the couple of resistance and thrust. However 

these considerations on the point vélique were grossly misleading and also superfluous. 

For firstly the resistance resultant in actual fact by no means acts obliquely upward, 

secondly it is possible to compensate the inevitable trimming moment by the nose of the 

sailing vessel by means of ballast or other design measures.

Fig. 6: Hull resistance and sail forces with point of intersection in the point vélique W

          ( Euler [1])

In addition it caused difficulties that the sail forces could not be accurately estimated 

according to impact theory. It was assumed that the sail area of several masts could be 

lumped in the centroid of all sail areas and that the resultant sail force would act through 

this point, as impact theory without accounting for any sail interactions would suggest. 

Aerodynamic effects as the cause of lift and drag of the sails were still unknown. 

Therefore the predictions of sail forces were unrealistic by magnitude and direction. The 

further assumption of impact theory that the sail force resultant in oblique inflow would 

vary with the square of the angle of incidence (sin
2 

 law) was false, which was not 
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recognized before some experiments in the second half of the 18th c. In conclusion in 

Euler’s time the propulsive forces acting on hull and sail and hence the resulting ship 

speed could not be realistically predicted.

It must be acknowledged as a positive element of understanding that the force 

components acting on ship and sail and their interactions were correctly identified, and 

the equilibrium position of the sailing vessel by drift angle, trim and heel angle were 

qualitatively properly understood. Regarding trim and heel the progress made in ship 

hydrostatics prior to 1750 had furnished important prerequisites (cf Section 3.1). On 

further details in the development of sailing theory during this period, see also Ludwig 

Rank [55].

Although Euler’s results on rowing, paddle wheel and screw propulsion still suffered 

from their reliance on impact theory for force predictions and hence failed to be of 

quantitative value, they still made a lasting contribution to propulsion theory which lies 

primarily in the analysis of the acting physical principles and mechanisms, which are 

fundamentally based on the momentum balance. Euler’s scientific courage must be 

admired to study the mechanical principles of propulsion systems which in his day were 

not yet ready to be technically realized.

In 1753 on the occasion of another prize contest by the Parisian Académie Royale des 

Sciences Euler had submitted a treatise [22] that dealt with the propulsion of ships 

without windpower, i.e., without sails („De promotione navium sine vi venti“, E.413). 

This award winning treatise written at a time when sail propulsion was still by far the 

dominant propulsion method for all major ships gave a basic overview of alternative 

propulsion methods, whose power was to be provided essentially by the humans on 

board, be it by known means like rowing, be it by mechanisms to be newly developed 

similar to the paddle wheel or the screw propeller, yes, even by jet propulsion as 

propagated earlier by Daniel Bernoulli . Though Euler did not develop such new 

propulsion systems to technical maturity as patents, he still qualitatively described 

correctly their physical principles of operation, also for propulsion systems which could 

only be realized in the 19
th 

c. by means of steam power. Thus he cannot be regarded as 

the inventor of such later solutions, but he anticipated by more than half a century 

before their realization the physical explanation of the performance of paddle wheel, 

screw propeller and jet propulsion. 

Human Performance Limits

Euler began his considerations with the question of how much mechanical power a 

human according to his physiological capacity can provide continuously. He estimated 

that a man under favorable load conditions may be able to move a load of about 15 kp at 

a velocity of about 0.65 m/sec for an extended period of time. This in today’s units 

corresponds to providing a power of about 100 Watts continuously. This power capacity 

agrees surprisingly well with current data on the continuous power performance of 

humans, if we disregard sportive peak performances in shorter time intervals. Euler 

adapted the power absorption of his ship propulsion systems to this human performance 

potential.

Oar Propulsion

The principle of ship propulsion by rowing was schematically regarded by Euler as if a 

submerged planar plate (FF, Fig. 7) was attached to a linkage system gliding on a roller 

C and was arranged forward of the bow (or abaft the stern) so that it could be 

horizontally shifted in a direction opposite to the motion of the ship. Thereby water 

mass is accelerated backward and a reaction force is generated on the plate which drives 

the ship forward as a thrust. After this work cycle the plate must be raised from the 

water, transferred back through the air and lowered into the water again (as the oar in 

rowing).



 - 19 -

Fig. 7: Ship propulsion by backward shifting of a plate in water (Euler [22])

Let the ship velocity be C, the horizontal velocity of the plate relative to the ship be V, 

hence the horizontal velocity of the plate relative to water V – C. Then if V is greater 

than C, a positive thrust is acting on the plate which drives the ship and in steady 

motion exactly overcomes the resistance. Euler thus equated thrust and resistance and 

determined the achievable velocity C of the ship from the power input by the crew at an 

assumed velocity V of the plate or “oar blade”. Unfortunately Euler, as was still 

common practice at this time, used Newton’s impact theory for estimating the influence 

of hull form and velocity upon the resistance coefficient, which was unrealistic and 

resulted in quantitatively misleading conclusions, which were later also rejected by 

Euler himself. Qualitatively it was correct that an increase in the area of the plate and a 

reduction of the hull resistance would improve the propulsion of the ship and increase 

the achievable ship speed.

Euler expected an improvement in the efficiency of this propulsion method if the blade 

was fitted with rotatable laminae like Venetian blinds (Fig. 8) which during the 

backward stroke of the blade would be turned into a horizontal position and hence 

would have a low resistance. Thus this kind of unidirectionally permeable blade could 

be arranged on both sides of the hull and connected to a system of levers OA-NN so that 

the blades could be continuously moved back and forth. 

Propulsion System with Cranked Shaft

The previous idea was further simplified if the blades on both board sides were driven 

by a horizontal shaft DD (Fig. 9) whose center part CC is cranked so that the propelling 

forces can act on the crank. The blades by their laminae are again unidirectionally 

permeable and are intended to move continuously back and forth in their submerged 

condition.

Fig. 8: Venetian blind blade with 

rotatable laminae and lever system 

for attachment and position control of 

the blades [22].

Fig. 9: Drive of Venetian blind 

blades by means of rotatable, cranked 

shaft [22].
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The paddle wheel principle

Fig. 10: Ship propulsion by two „paddle wheels“ with plates as blades [22]

In order avoid to this pendulum like motion, which was not very practical as Euler 

probably realized, too, to make permeable blades dispensable and to operate in a 

continuous motion, it was almost cogently necessary to arrive at the principle of the 

paddle wheel (Fig. 10). Here several plates are attached to the spokes of the driving 

shaft on both sides of the hull which are driven by the shaft AA, which in turn is kept in 

steady rotation via a whim gear (E, D) by the crew rotating the arms M about the 

vertical axis OO. The blades are not profiled like paddles, but they do provide a steady 

thrust while they are immersed in the water. The “paddle wheel” as a steadily rotating 

engine according to Euler is a logical further advance of the idea of the “oar blade”, 

which works only intermittently in a horizontal translation. Thus Euler succeeded 

immediately to generalize the balance of input power vs. usefully delivered thrust power 

from the oar blade to the paddle wheel. “Paddle wheel propulsion” is thus regarded as a 

generalized, continuously operating form of “oar blade propulsion” with improved 

efficiency.

The ”screw propeller principle“

Encouraged by the proven idea of the windmill Euler in his next step arrived at a 

propulsion system whose configuration resembled a modern screw propeller (Fig. 11). 

A system rotatable about the longitudinal axis AB is arranged in front of the bow or 

abaft the stern of a ship to whose spokes planar blades FF are attached with some angle 

of inclination relative to the longitudinal direction. Thereby in their rotation they 

experience a longitudianl force (thrust) and a circumferential force, similar to a modern 

screw propeller, though without the helical curvature of the blade surface and without 

modern profiled blade sections.

Fig. 11: Propulsion by propeller with                                   Fig. 12: Velocities and forces 

              planar blades [22]                                                            acting on the blade [22]
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Euler in his analysis of propeller operation took into consideration the mean effects 

acting on the blade, lumped into its area centroid G. He combined the components of 

inflow in the direction of advance (  and in the circumferential direction (GL) into 

the resultant GN (Fig. 12) acting with an angle of incidence  to the blade. In this 

context, too, Euler remained prepossessed by Newton’s impact theory of resistance and 

therefore in his analysis of the force acting on the blade section (through G) accounted 

only for the normal force GH, perpendicular to the blade, which has components in the 

circumferential and advance directions. Thus he neglected the tangential forces of the 

blade section and all effects of foil theory acting on the blade, which are known today. 

Thereby his analysis remained crudely approximative. Qualitatively his theory did 

correctly explain the chain of phenomena by which a planar blade propeller or later a 

screw propeller in its rotation in order to overcome blade resistance in the 

circumferential direction absorbs propulsive power and at the time generates a thrust in 

the direction of advance.

Jet propulsion

The efflux from a containment vessel or the flux through a vessel or pipe causes a 

reaction force acting on the boundaries of the vessel as is known from the garden hose. 

The flow vessel or pipe can be arranged in a ship in such a way that the resulting 

reaction force provides a thrust for ship propulsion.

Euler picked up this idea following suggestions by Daniel Bernoulli 

(„Hydrodynamica“, 1738), analyzed the acting forces and conceived a jet propulsion 

system for a ship (Fig. 13). The flow through the system of pipes is induced either by 

the pressure head of a tank arranged in a high position or by a reciprocating piston pump 

(EE) in the pipe. This pump in principle can be driven by human operator power.

Euler first calculated the resulting reaction force on the boundaries of the vessel for a 

system with arbitrary cross section distribution and in some arbitrary spatial position. 

He demonstrated that this force depended only on the flow rate and on the area and 

orientation of the inlet and outlet cross sections, but not on the cross section variation of 

the vessel between the end sections.

Fig. 13: Jet propulsion system according to Euler [22] with piston pump (EE)

He then addressed the most favorable case for ship propulsion (Fig. 13) where the fluid 

enters the system through a horizontal pipe of cross section EE from abaft and after a 

deflection of 180 degrees leaves the system rearward via a horizontal pipe nozzle with 



 - 22 -

the orifice FF. The cross section of the orifice FF can be made very small relative to the 

intake cross section at EE, thus very high jet velocities can be achieved.

Mechanically the process was subdivided by Euler into two cycles (Fig. 13), the intake 

cycle and the ejection cycle: During the intake cycle fluid is sucked into the pipe system 

from below (at the suction funnel at B), the valve at n is open, the valve at m closed. 

Because of the deflection of the fluid by 90 degrees at A a certain horizontal force 

already arises which acts as thrust. During the ejection cycle the piston is advanced 

forward, the valve at n closes, the one at m opens, the jet can now exit at FF. This cycle 

generates a very high thrust due to the great jet velocity and the complete deflection by 

180 degrees. In order to alleviate the thrust fluctuations between cycles, Euler 

advocated two parallel jet systems in counter rhythm. 

In his example powering calculations Euler then recognized the limitation that jet 

propulsion can profitably operate probably only at great propulsive power which 

exceeded the powering potential from human energy, i.e., from the energy sources 

available in his day.

Aftereffects

Although first experiments with and patents for paddle wheels, screw propellers and jet 

propulsion had existed for some time before Euler’s publications, the realization of 

those ideas still failed in Euler’s time, essentially due to the lack of a power source of 

sufficient capacity aboard ships. It was only after the introduction of steam propulsion  

that more advanced inventions were able to achieve technical and commercial success. 

Euler’s physical explanations and calculations for such propulsion systems most likely 

were not known to those inventors. It was only much later that his thoughts were 

reassessed and were apt to be taken into consideration in modern theories of ship 

propulsion. As successful inventors of some of the earliest, patented and more mature 

solutions deserve to be named:

- Steam ship with paddle wheel: Symington (1802), Robert Fulton (1807)

- Screw propeller: Ressel (1826), Ericsson (1834-36), Smith (1838)

- Jet propulsion: Ruthven (1851), Seydell (1856) and the ship.WATERWITCH

         (1867)

3.5 Maneuvering

In ship theory the term „maneuvering“ generally comprises all motions of the ship 

taking place in the horizontal plane as translations (parallel and normal to the ship’s 

longitudinal axis) and as rotation about the vertical axis (yawing). Let the coupling with 

other degrees of freedom of the ship be neglected here as a first approximation. Thus 

maneuvering does include the dynamic behavior of the ship on a straight course, also in 

oblique inflow, and in turning maneuvers. Great technical and practical significance was 

attributed above all to the optimization of sailing performance of the big sailing vessels 

of the 18
th 

c. in different wind conditions and directions. This is why studies of ship 

theory already in the early 18
th 

c. had been concerned with maneuvering theories (Renau 

[19], Huygens [20], Johann Bernoulli [17]). Euler continued the work of these 

precursors by his own contributions, above all on the dynamics and aero- and 

hydrodynamics of sailing ships, and gave essential new momentum to this topic area. 

The most essential results can again be found in the Scientia Navalis [1] and in the 

Théorie Complète [24]. The synopses by Habicht in [7], [8], [9] are very helpful for the 

understanding, too.
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The analysis of ship maneuvers requires physical and analytical knowledge in the 

following areas:

- The magnitude and direction of forces and moments acting on hull, sail and rudder, 

also for wind directions obliquely to the course.

-  The dynamics of the system, especially under the influence of inertia, sailing rig 

and resistance forces.

- The solution of the equations of motion.

Euler concerned himself thoroughly with all these aspects. His determination of forces 

and moments here again suffered from the weaknesses of Newton’s impact theory, but 

his contributions to the system dynamics and the integration of the equations of motion 

remained unaffected by this. They were in part breakthroughs and are valid until today. 

These applications of mechanics and infinitesimal calculus to ship motions in 

maneuvers belong to the first practically and technically successful contributions by 

modern dynamics and fluid mechanics.

In Scientia Navalis [1], vol. I, Chapter II Euler developed an approach for the rotational 

motion of an extended body system of arbitrary mass distribution and about a given, 

fixed axis of rotation through the body center of gravity. Here he still presumed “free 

rotation” about the axis through the CG, i.e., he disregarded any “bearing reactions” 

that may result from the coupling with other inertia effects stemming from simultaneous 

rotation about other axes (by deviational moments). These assumptions would hold 

strictly only if the principal axes of inertia were chosen as coordinate system. For ships 

he chose an orthogonal coordinate system through the center of gravity with the 

longitudinal axis being horizontal in the ship center plane. Thereby the simplification in 

neglecting the couplings holds in good approximation. Then by integration over all 

mass elements of the ship he obtained the rotational momentum M in a turning motion  

(where  r = distance of the mass element dm from the center of rotation):

              M=  (d /dt),       where  =  r
2 

dm= the axial mass moment of inertia,

                                              and     = angular velocity.

The mass moment of inertia was first introduced by Euler in this place and for the 

present purpose (he named it „momentum inertiae“). With these preparations the motion 

of the maneuvering ship could now be derived by integration of the translational and 

rotational laws of dynamics, if the external forces, i.e., thrust and resistance, and their 

moments, were known. However Euler still neglected the influence of the 

hydrodynamic mass moment of inertia which in a turning maneuver may be of 

comparable magnitude as the mass moment of inertia of the body.

Euler now first calculated a few examples for the axial mass moments of inertia of 

simple, homogeneous bodies. Then he investigated the motions of the ship on a straight 

course before the wind, e.g., in a stopping maneuver with the ship slowed down by its 

resistance with all sails reefed, or in accelerating the ship from rest by a given sail force. 

Finally he considered also the case of oblique wind, i.e., with the wind acting obliquely 

to the course and the rudder laid for coursekeeping at steady speed. In this application 

the drift angle was estimated empirically from plausible assumptions and was assumed 

to be speed independent. The heel angle under wind load was estimated hydrostatically 

and the sail force was adjusted thereto. In systematic series investigations the sail forces 

were then investigated for wind directions before the wind, with quartering winds and 

pointing high. Even the deflection of the sail cloth was taken into account, though 

everything only according to impact theory. With these “polar curves” of the rig (in 

today’s terminology) Euler was also able to deal with nautical problems, e.g., finding 

favorable strategies for cruising against the wind.
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Regarding the placement of masts and the arrangement of sail area, a subject to which 

Euler returned several times, he applied the dynamics of maneuvering to arrive at very 

practical recommendations. The masts and their sails should be placed in such a way 

that the sail force resultant through the sail area centroid would act slightly abaft the 

center of action of the transverse hull resistance (“lateral plan centroid”) so that the 

couple of these two forces would turn the forebody into the wind. This tendency could 

be compensated by minor rudder action to keep the ship on course. By contrast ships 

tendings to drift leeward suffered from increasing drift angles, resistance increases and 

difficulties in coursekeeping. Euler was able to explain such observed phenomena 

plausibly by his mechanics of maneuvering. The prediction of forces by magnitude and 

direction was more difficult. The centers of action of the resulting forces on the sails in 

air and on the hull under water were estimated in accordance with impact theory to lie in 

the centroids of the respective areas, thus in the sail area centroid and the lateral plan 

area centroid, respectively.

The simplifications made in the choice of axes of inertia continued to concern Euler for 

some more time. It was only later in the context of his analysis of the arbitrary rotational 

motion of a body and in connection with the equations motion of the gyroscope [56], 

[57] that he arrived at a general solution for the arbitrary rotation of a body about its 

centroid, formulated in terms of the “principal axes of inertia” through the center of 

gravity. If the rotational motion of the body was represented with reference to these 

three orthogonal axes, then the deviational moments of inertia would vanish and the 

equations of motion with uncoupled inertia terms would hold exactly in this reference 

frame. The principal axes of inertia were defined and determined by Euler according to 

an idea by Segner (1707-1777), who had published this in 1758.

The theory of ships in this field owes much gratitude to Euler efforts and insights that 

have remained of classical, lasting value throughout the field of mechanics, i.e., well 

beyond the initially motivating field of ship motions.

3.6 Ship motions

The ship, considered as a rigid body, has three oscillatory degrees of freedom in which 

inertial and restoring forces or moments exist so that a periodic oscillation may arise: 

Heaving (translation parallel to the vertical axis), rolling (rotation about the longitudinal 

axis) and pitching (rotation about the transverse axis of the ship). These motions are 

designated in this subsection as “oscillatory ship motions”, or briefly as “ship motions”. 

Since in all of these degrees of freedom hydrostatic forces or moments are involved, it is 

rather easy to date the time since when the treatment of these oscillations became 

feasible, viz., only after Bouguer and Euler had created a foundation for the calculation 

of such restoring forces or moments acting on the ship in its position displaced from 

equilibrium. Thus it is no coincidence that both, again independently and almost 

simultaneously, published first theories on oscillatory ship motions, viz., in their 

monumental principal works Théorie du Navire [2] und Scientia Navalis [1] (appeared 

in 1746 and 1749). The solutions and even calculation methods proposed by both are 

not equal, but in practice equivalent. Thus we may limit ourselves here to the narration 

of Euler’s contributions. 

Fortunately in addition a very substantial part of the correspondence between Euler and 

Johann as well as Daniel Bernoulli has been conserved (”Commercium Epistolicum” 

[58], contained in Series IVa of [6]), which contains several letters dating from 1738 to 

1740 on the subject of ship oscillations. Euler, who at this time was writing a chapter on 

ship motions in Scientia Navalis, had succeeded in convincing his teacher Johann and 

his friend Daniel Bernoulli to work on similar tasks. Therefrom resulted, in addition to 

Euler’s own results, also some publications by the Bernoullis during the same period, 

e.g., by Daniel Bernoulli [59] in the years 1738/39.
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The studies initially concentrated on the determination of natural frequencies and 

periods of ship oscillations in order to predict or avoid resonances. For this purpose it 

was required to know inertia and restoring forces or moments, which could now be 

predicted quite realistically by available methods. (However the influence of 

hydrodynamic masses, which may be of considerable magnitude in many degrees of 

freedom, was not yet taken into account).

All three scientist – and Bouguer likewise- had noticed the analogy between a physical 

pendulum, which had been investigated earlier by Galilei and Huygens, as it occurs in a 

pendulum clock, and the ship moving in an oscillatory degree of freedom. This analogy 

is founded on the fact that both system types to the first approximation (small 

amplitudes) constitute linear oscillators with isochronous periodic oscillations, as the 

equations of motion will already demonstrate. If we follow Euler’s derivation for the 

pendulum and for the rolling ship (small roll angle ), the following comparison can be 

drawn:

Pendulum (Mass m, center of gravity distance from center of rotation s):

Equation of motion:    (d
2 

/dt
2

)  +  m g s  = 0

Equivalent pendulum length:     l
EQU 

= /(m s)

Natural period:        T = 2  
gl

EQU

Rolling Ship (Mass m, metacentric radius GM):

Equation of motion:    (d
2 

/dt
2

)  +  m g GM  = 0

Equivalent pendulum length:     l
EQU 

=  GM)

Natural period:          T = 2  
gl

EQU

 = 2  )( GM∆Θ
  

             where    = mass moment of inertia in rolling ( )

The analogies are clearly visible, especially between s and GM.

Corresponding results were obtained by Johann Bernoulli for heaving and by Euler and 

Daniel Bernoulli for pitching, by DanielBernoulli also already for coupled rolling and 

heaving [59].

In design it was the purpose to avoid great accelerations at resonance, thus to reduce the 

natural frequencies and to increase the natural periods. In rolling, e.g., where GM must 

not be chosen too small, Euler (like others) recommended to increase the mass moment 

of inertia  by shifting any movable masses inside the ship as far away from the center 

of gravity as possible. A plausible idea, but only practicable within narrow limits.

It should be noted with interest, too, that Euler in a later treatise [23] on rolling and 

pitching almost in passing ((§16-§19) also mentions how to determine the interior loads 

of the ship, e.g., at midship section. In his ingenious way Euler takes a planar vertical 

section through the hull girder and determines the longitudinal bending moment as an 

internal load in this cross section. By this influence he also explains the deflection of the 

hull in longitudinal bending, the much feared “hogging”. The article further elaborates 

on how dynamic loads must be added to to the static loading. This to my knowledge is 

the first historical entry point into those methods which later developed into 

longitudinal strength calculations for ships and became indispensable in dimensioning 

the structure of the hull.

The treatment of ship oscillations by Euler and his contemporaries however still had 

significant gaps and limitations:
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- Neglect of hydrodynamic mass and damping forces,

- Lack of load assumptions for excitation forces and moments, especially by the 

seaway, hence lack of data for forced oscillations,

- Simplification in the choice of oscillation axes through the center of gravity as 

being parallel and orthogonal to the waterplane in place of the principal axes of 

inertia,

- Limitation to small amplitudes, linearization,

- Absence of statistical methods for frequency and extreme value analysis.

Euler was aware of the majority of these limitations, as his cautious premises and 

disclaimers usually indicate. Nevertheless we must recognize and pay our tribute to the 

useful knowledge already achieved in Eulers era, both in scientific substance and in 

qualitative practical insights.

4. Conclusions

By consistent application of the first principles of mechanics and fluid mechanics, 

which Euler in part had created or extended himself, he was able to base the new, 

application oriented scientific discipline of ship theory on a firm foundation and thereby 

to help lay the ground for modern ship theory. He left his mark on the structure of this 

field. Many of his results are still valid and of lasting value. The following 

achievements deserve to be singled out as especially noteworthy:

o The foundation of criteria and calculation methods for the hydrostatic stability of 

ships, derived by integration of the pressure distribution in the fluid at rest, acting on the 

ship slightly displaced from equlibrium. The application of stability criteria already at 

the design stage as a starting point for more systematic analysis of the safety of ships.

o Initially application of Newton’s impact theory of resistance, which yielded false 

predictions, yet combining correct system dynamics with false force coefficients. Later 

after intensive efforts discarding of the misleading impact theory and creation of the 

promising field theory.

o Contributions to the laws of ship propulsion by sailing, rowing, paddle wheel, 

screw propeller and jet propulsion. Correct application of the momentum theorem to 

explaining the principles of propulsion, unfortunately with wrong force coefficients.

o Fundamental studies on system dynamics of the maneuvering vessel with flow 

effects on hull, sail and rudder, also solution of the equations of motion.

o Contributions to ship oscillations by deriving the natural periods for rolling, 

heaving and pitching based on inertia and hydrostatic restoring forces.

In all these activities we owe Euler our gratitude not only for his important insights in 

the theory of ships, but also for what Truesdell [3] already praised as the special 

characteristic of style in all of Euler’s work: 

„First principles, generality, order and above all clarity“.

It took a major span of time before Eulers insights were understood by the engineers 

and found acceptance in practice. But even in his lifetime there were a few enlightened 

contemporaries and practitioners who recognized and appreciated the value of 

theoretically well founded knowledge. The eminent Swedish naval constructor F.H. af 

Chapman [56] be quoted here as a key witness who had comprehensive practical 
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experience in shipbuilding, but was also familiar with the literature of his era, hence 

also with Bouguer’s and Euler’s treatises, which he held in high esteem. He is quoted 

with the sentence:

„Without a good theory design is only a game of hazard!“
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